AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor Localization Systems

- Blog
- Mini Projects
- Order cancellation
- Privacy policy
- Project Categories
- Return Policy
- Terms and Conditions
- Terms of use
- Discount
-
Projects
- Embedded
- Java
-
Matlab
- 5G Communication/Signal Processing
- ANTENNA Design
- Artificial intelligence
- Automation & Fault Detection
- Cryptography- Authentication
- Cyber Security
- Data Analytics
- Deep Learning
- Digital Image Processing
- GAN
- Machine Learning
- Matlab Hardware Interface
- Medical Imaging
- Robotic OS (ROS) - Hardware
- Robotic OS (ROS) - Simulation
- Web Application
- Mechanical
- Python
- VLSI
- Workshops
- Internship
Your shopping cart is empty!
Product Description
Technology: DEEP LEARNING / GAN MATLAB
Abstract
The demand for localization services increases, indoor localization technology based on fingerprint recognition has become the prevailing positioning technology due to its high precision and minimal hardware requirements. In addition to high accuracy, an indoor positioning system should have low complexity and require little processing time to accommodate mobile devices. Fingerprint-based indoor localization is an effective method that can satisfy these requirements; however, the received signal strength (RSS) or channel state information (CSI) from surrounding access points must be measured at each reference point to build a fingerprint database. In the existing system, keeping amplitude as a feature, deep convolutional GAN is developed in which the finger print construction through amplitude of the recorded signal is used for authentication. In the Proposed system, RSSI values are generated from Pseudo Signals generated for each devices, digitally modulated with the phase of the transmitting waves to generate communicating unique code. Further the system is provided with continuous protection through the generated Unique RSSI code. Further the system is tested using accuracy and sensitivity.
Proposed system
In the Proposed system, RSSI values are generated from Pseudo Signals generated for each devices, digitally modulated with the phase of the transmitting waves to generate communicating unique code. Further the system is provided with continuous protection through the generated Unique RSSI code. Further the system is tested using accuracy and sensitivity.
When you order from finalyearprojects.in, you will receive a confirmation email. Once your order is shipped, you will be emailed the tracking information for your order's shipment. You can choose your preferred shipping method on the Order Information page during the checkout process.
The total time it takes to receive your order is shown below:
The total delivery time is calculated from the time your order is placed until the time it is delivered to you. Total delivery time is broken down into processing time and shipping time.
Processing time: The time it takes to prepare your item(s) to ship from our warehouse. This includes preparing your items, performing quality checks, and packing for shipment.
Shipping time: The time for your item(s) to tarvel from our warehouse to your destination.
Shipping from your local warehouse is significantly faster. Some charges may apply.
In addition, the transit time depends on where you're located and where your package comes from. If you want to know more information, please contact the customer service. We will settle your problem as soon as possible. Enjoy shopping!
Download Abstract
Click the below button to download the abstract.
Package Includes
Software Projects Includes
- Demo Video
- Abstract
- Base paper
- Full Project PPT
- UML Diagrams
- SRS
- Source Code
- Screen Shots
- Software Links
- Reference Papers
- Full Project Documentation
- Online support
The Delivery time for software projects is 2 -3 working days. Some of the software projects will require Hardware interface. Please go through the hardware Requirements in the abstract carefully. The Hardware will take 7-8 Working Days
Hardware Projects Includes
- Demo Video
- Abstract
- Base paper
- Full Project PPT
- Datasheets
- Circuit Diagrams
- Source Code
- Screen Shots & Photos
- Software Links
- Reference Papers
- Lit survey
- Full Project Documentation
- Online support
The Delivery time for Hardware
projects is 7-8 working days.
Mini Projects: Software Includes
- Demo Video
- Abstract
- Base paper
- Full Project PPT
- UML Diagrams
- SRS
- Source Code
- Screen Shots
- Software Links
- Reference Papers
- Full Project Documentation
- Online support
The
Delivery time for software Miniprojects is 2 -3 working days.
Mini Projects - Hardware includes
- Demo Video
- Abstract
- PPT
- Datasheets
- Circuit Diagrams
- Source Code
- Screen Shots & Photos
- Software Links
- Reference Papers
- Full Project Documentation
- Online
support
The Delivery time for Hardware Mini projects is 7-8 working days.