Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets
- Blog
- Mini Projects
- Order cancellation
- Privacy policy
- Project Categories
- Return Policy
- Terms and Conditions
- Terms of use
- Discount
-
Projects
- Embedded
- Java
-
Matlab
- 5G Communication/Signal Processing
- ANTENNA Design
- Artificial intelligence
- Automation & Fault Detection
- Cryptography- Authentication
- Cyber Security
- Data Analytics
- Deep Learning
- Digital Image Processing
- GAN
- Machine Learning
- Matlab Hardware Interface
- Medical Imaging
- Robotic OS (ROS) - Hardware
- Robotic OS (ROS) - Simulation
- Web Application
- Mechanical
- Python
- VLSI
- Workshops
- Internship
Your shopping cart is empty!
Product Description
Technology: Deep Learning Tool: MATLAB R2018a
Objective:
The main aim of this project is used to identify the
COVID or healthy from X-ray images using deep learning techniques.
Abstract:
In the rapidly evolving global pandemic of COVID-19, the use of CXR for COVID-19 diagnosis or triage for patient management has become an important issue to preserve limited medical resources and prevent further spreading of the virus. However, the current diagnostic performance with CXR is not sufficient for routine clinical use, so the need of artificial intelligence to improve diagnostic performance of CXR is increasing. Our analysis found that there are statistically significant differences in the patch-wise intensity distribution, which is well-correlated with the radiological findings of the localized intensity variations in COVID-19 CXR. This findings lead us to propose a novel patch-based neural network architecture with random patch cropping, from which the final classification result are obtained by majority voting from inference results at multiple patch locations.
Proposed
System:
The Proposed system focus on
tumor segmentation of medical image sequences using back propagation neural
network. The proposed work utilizes pattern based classification using neural
network function. Active Contour segmentation is designed in the proposed area.
Here the threshold required for segmenting adjusts itself according to the
segmented area and position.
When you order from finalyearprojects.in, you will receive a confirmation email. Once your order is shipped, you will be emailed the tracking information for your order's shipment. You can choose your preferred shipping method on the Order Information page during the checkout process.
The total time it takes to receive your order is shown below:
The total delivery time is calculated from the time your order is placed until the time it is delivered to you. Total delivery time is broken down into processing time and shipping time.
Processing time: The time it takes to prepare your item(s) to ship from our warehouse. This includes preparing your items, performing quality checks, and packing for shipment.
Shipping time: The time for your item(s) to tarvel from our warehouse to your destination.
Shipping from your local warehouse is significantly faster. Some charges may apply.
In addition, the transit time depends on where you're located and where your package comes from. If you want to know more information, please contact the customer service. We will settle your problem as soon as possible. Enjoy shopping!
Download Abstract
Click the below button to download the abstract.
Package Includes
Software Projects Includes
- Demo Video
- Abstract
- Base paper
- Full Project PPT
- UML Diagrams
- SRS
- Source Code
- Screen Shots
- Software Links
- Reference Papers
- Full Project Documentation
- Online support
The Delivery time for software projects is 2 -3 working days. Some of the software projects will require Hardware interface. Please go through the hardware Requirements in the abstract carefully. The Hardware will take 7-8 Working Days
Hardware Projects Includes
- Demo Video
- Abstract
- Base paper
- Full Project PPT
- Datasheets
- Circuit Diagrams
- Source Code
- Screen Shots & Photos
- Software Links
- Reference Papers
- Lit survey
- Full Project Documentation
- Online support
The Delivery time for Hardware
projects is 7-8 working days.
Mini Projects: Software Includes
- Demo Video
- Abstract
- Base paper
- Full Project PPT
- UML Diagrams
- SRS
- Source Code
- Screen Shots
- Software Links
- Reference Papers
- Full Project Documentation
- Online support
The
Delivery time for software Miniprojects is 2 -3 working days.
Mini Projects - Hardware includes
- Demo Video
- Abstract
- PPT
- Datasheets
- Circuit Diagrams
- Source Code
- Screen Shots & Photos
- Software Links
- Reference Papers
- Full Project Documentation
- Online
support
The Delivery time for Hardware Mini projects is 7-8 working days.