Welcome to Final Year Projects!!
  • Newsletter
  • +91 90254 34960
  • Contact Us
  • FAQs
Select category
  • Select category
  • Artificial Intelligence
  • Biomedical
  • Block Chain
  • Cloud Computing
  • Cyber Security
  • Data mining
  • Deep Learning
  • Embedded Components
  • Generative AI
  • IoT
  • LORA
  • Machine Learning
  • Mini Projects
    • Embedded
    • Java
    • Matlab
    • Python
    • VLSI
      • pipeline
  • Natural Language Processing
  • Projects
    • Embedded
      • Agriculture
      • Artificial Intelligence(AI)
      • Biomedical
      • Digital Twin
      • Image Processing
      • Internet of Things(IoT)
      • LoRaWAN
      • Raspberry PI
      • Robotics
      • Social Cause
    • Java
      • Android
      • Blockchain
      • Cloud Computing
      • Data Mining
      • Internet of Things (IoT)
      • Machine Learning
      • Secure Computing
    • Matlab
      • Cryptography- Authentication
      • Cyber Security
      • Deep Learning
      • Digital Image Processing
      • Machine Learning
      • Natural Language Processing
    • Mechanical
      • Automation
      • Automobile
      • Design and Analysis
      • Fabrication
      • Pnumatics
    • Python
      • Blockchain
      • Cybersecurity
      • Deep Learning
      • Explainable AI
      • Generative AI
      • GPT
      • Machine Learning
      • OpenCV
    • VLSI
      • Low Power VLSI Design
      • On-Chip Cryptography
      • Self Repairing Technology
  • Robotics
  • Secure Computing
Login / Register
0 Wishlist
0 Compare
0 items ₹0.00
Menu
0 items ₹0.00
Browse Categories
  • Java
  • Python
  • Embedded
  • Machine Learning
  • Mechanical
  • Matlab
  • VLSI
  • Raspberry PI
  • Artificial Intelligence
  • Home
  • Shop
    • PROJECTS
      • PROJECTS
        • Java
        • Python
        • Embedded
        • Matlab
        • VLSI
        • Mechanical
    • MINI PROJECTS
      • PROJECTS
        • Java
        • Python
        • Matlab
        • VLSI
        • Embedded
    • WORKSHOPS
      • Workshops
        • Python
        • Robotics
        • Industry Visit
        • Raspberry Pi
        • Image Processing
        • Mechanical Engineering
        • VLSI
        • Arduino
        • Matlab
        • Machine Learning
        • Embedded
        • Android
        • IoT
    • INTERNSHIPS
      • Internships
        • Python
        • Machine learning
        • Artificial intelligence
        • Web development
        • Android
        • IoT / internet of things
        • Cloud Computing
        • Digital Marketing
        • Big Data
  • Journal paper
  • Blog
  • About us
  • Contact us
A Deep Learning Ensemble With Data Resampling for Credit Card Fraud Detection
Click to enlarge
Home Projects Python A Deep Learning Ensemble With Data Resampling for Credit Card Fraud Detection
Nyx - An Educational Assistant for the Visually Impaired
Nyx - An Educational Assistant for the Visually Impaired ₹5,500.00
Back to products
A Lightweight Robust Deep Learning Model Gained High Accuracy in Classifying a Wide Range of Diabetic Retinopathy Images
A Lightweight Robust Deep Learning Model Gained High Accuracy in Classifying a Wide Range of Diabetic Retinopathy Images ₹5,500.00

A Deep Learning Ensemble With Data Resampling for Credit Card Fraud Detection

₹5,500.00

Aim:

People can use credit cards for online transactions as it provides an efficient and easy-to-use facility.  With the increase in usage of credit cards, the capacity of credit card misuse has also enhanced. Credit card frauds cause significant financial losses for both credit card holders and financial companies. The main aim is to detect fraudulent transactions using credit cards with the help of ML algorithms and deep learning algorithms.

Compare
Add to wishlist
SKU: Python - Cybersecurity Categories: Cyber Security, Cybersecurity, Projects, Python Tags: Creditcard Fraud Detection, Cybersecurity - Python, KNN, Logistic Regression, Machine Learning, Random Forest Classifier, Support Vector Classifier, XGB Classifier
Share:
  • Description
  • Reviews (0)
  • Software Download
  • Download Abstract
  • Shipping & Delivery
Description

Aim:

     People can use credit cards for online transactions as it provides an efficient and easy-to-use facility.  With the increase in usage of credit cards, the capacity of credit card misuse has also enhanced. Credit card frauds cause significant financial losses for both credit card holders and financial companies. The main aim is to detect fraudulent transactions using credit cards with the help of ML algorithms and deep learning algorithms.

Abstract:

     Credit card fraud remains a pervasive issue, leading to substantial financial losses for both financial institutions and cardholders. To combat this threat effectively, this study presents a novel approach to credit card fraud detection using a deep learning ensemble coupled with data resampling techniques. The proposed system combines multiple deep learning models to enhance the classification of fraudulent transactions, while employing resampling methods to address the class imbalance prevalent in credit card transaction data. Through extensive experimentation and evaluation on diverse datasets, our ensemble demonstrates notable improvements in fraud detection accuracy, outperforming single-model approaches and conventional sampling techniques. The results reveal the system’s robustness in identifying fraudulent activities while minimizing false alarms, providing a valuable tool for financial security and risk mitigation in today’s digital transaction landscape.

Existing System:

           The relevant literature present many machines learning based approaches for credit card detection, such as Decision Tree classifier, K-Nearest neighbors, Random Forest classifier, Support Vector classifier, Logistic Regression and XG Boost, which results low accuracy. In 2020, there were 393,207 cases of CCF out of approximately 1.4 million total reports of identity theft. CCF is now the second most prevalent sort of identity theft recorded as of this year, only following government documents and benefits fraud. In 2020, there were 365,597 incidences of fraud perpetrated using new credit card accounts. The number of identity theft complaints has climbed by 113% from 2019 to 2020, with credit card identity theft reports increasing by 44.6%. Payment card theft cost the global economy $24.26 billion last year. With 38.6% of reported card fraud losses in 2018, the United States is the most vulnerable country to credit theft.

Problem Definition:

       By proposing Machine learning Algorithms, based approaches for credit card detection, such as Extreme Learning Method, Decision Tree classifier, K-Nearest neighbors, Random Forest classifier, Support Vector classifier, Logistic Regression and XG Boost. The model results leds to low accruracy.

Proposed System:

          Deep learning (DL) algorithms applied applications in computer network, intrusion detection, banking, insurance, mobile cellular networks, health care fraud detection, medical and malware detection, detection for video surveillance, location tracking, Android malware detection, home automation, and heart disease prediction. we explore DL Algorithms to identify credit card thefts in the banking industry in this model. It uses a number of deep learning algorithms for detecting CCF. However, in this model, we choose the CNN model and its layers to determine if the original fraud is the normal transaction of qualified datasets.

Reviews (0)

Reviews

There are no reviews yet.

Be the first to review “A Deep Learning Ensemble With Data Resampling for Credit Card Fraud Detection” Cancel reply

Your email address will not be published. Required fields are marked *


The reCAPTCHA verification period has expired. Please reload the page.

Software Download

You must be logged in to download the software.

Download Abstract

You must be logged in to download the abstract.

Shipping & Delivery
wd-ship-1
wd-ship-2

MAECENAS IACULIS

Vestibulum curae torquent diam diam commodo parturient penatibus nunc dui adipiscing convallis bulum parturient suspendisse parturient a.Parturient in parturient scelerisque nibh lectus quam a natoque adipiscing a vestibulum hendrerit et pharetra fames nunc natoque dui.

ADIPISCING CONVALLIS BULUM

  • Vestibulum penatibus nunc dui adipiscing convallis bulum parturient suspendisse.
  • Abitur parturient praesent lectus quam a natoque adipiscing a vestibulum hendre.
  • Diam parturient dictumst parturient scelerisque nibh lectus.

Scelerisque adipiscing bibendum sem vestibulum et in a a a purus lectus faucibus lobortis tincidunt purus lectus nisl class eros.Condimentum a et ullamcorper dictumst mus et tristique elementum nam inceptos hac parturient scelerisque vestibulum amet elit ut volutpat.

Related products

A Rotational Libra R-CNN Method for Ship Detection
Compare

A Rotational Libra R-CNN Method for Ship Detection

Projects, Python, Deep Learning, Deep Learning
₹5,500.00
Aim:           To automate the detection of presence of ships and to classify the types of ships
Add to wishlist
Add to cart
Quick view
Compare

Advancing Fake News Detection: Hybrid Deep Learning With FastText and Explainable AI

Python, Machine Learning, Machine Learning
₹5,500.00
To develop a robust and explainable hybrid deep learning framework for detecting fake news by integrating advanced transformer-based models and explainable AI techniques, thereby enhancing classification accuracy, improving model generalization, and fostering transparency in decision-making
Add to wishlist
Add to cart
Quick view
Advancing Ovarian
Compare

Advancing Ovarian Cancer Diagnosis Through Deep Learning and Explainable AI: A Multiclassification Approach

Python, Explainable AI, Projects, Deep Learning
₹5,500.00
To develop a robust and interpretable AI system for ovarian cancer diagnosis using multiclassification techniques and advanced deep learning models, including ResNet152V2, EfficientNetV2B3, and ResNet50V2.
Add to wishlist
Add to cart
Quick view
CNN-Keypoint Based Two-Stage Hybrid Approach for Copy-Move Forgery Detection
Compare

CNN-Keypoint Based Two-Stage Hybrid Approach for Copy-Move Forgery Detection

Projects, Python, Deep Learning, Deep Learning
₹5,500.00
To develop an efficient image forgery detection system using deep learning, leveraging transfer learning models such as ConvNeXt and ResNet to enhance accuracy. The project focuses on designing a robust system that can detect forged images with high precision and recall.
Add to wishlist
Add to cart
Quick view
Compare

Deep Fake Video Detection Using Transfer learning

Projects, Python, Deep Learning, Deep Learning
₹5,500.00

Aim:

      To enhance deep fake detection by extracting facial features using FaceNet512 and training these features with transfer learning models. Upon detecting deep fake content, the system will automatically send an email alert with the manipulated image.

Add to wishlist
Add to cart
Quick view
Compare

Online Recruitment Fraud (ORF) Detection Using Deep Learning Approaches

Projects, Python, Deep Learning, Artificial Intelligence, Deep Learning
₹5,500.00
Aim: To propose an advanced fraud detection system for online job postings by utilizing a transformer-based machine learning model, BERT, to enhance the detection of fraudulent job listings and improve the security of online recruitment platforms.
Add to wishlist
Add to cart
Quick view
Compare

Predicting Heart Diseases Using Machine Learning and Different Data Classification Techniques

Python, Machine Learning, Projects, Machine Learning
₹5,500.00
Aim: This study develops a machine learning model to classify heart disease into different severity levels. It analyzes patient data to improve diagnostic accuracy and support medical decisions.
Add to wishlist
Add to cart
Quick view
Compare

Whale and Dolphin Classification

Projects, Python, Deep Learning, Deep Learning
₹5,500.00
The proposed method involves a multi-step process to classify whale and dolphin species from images. First, the dataset is collected and pre-processed to ensure high-quality input data. The VGG16 model is used to extract features from the images, capturing complex patterns and details. These features are then used to train a Support Vector Machine (SVM) model, which excels in binary and multi-class classification tasks.
Add to wishlist
Add to cart
Quick view

    Global Techno Solutions - GTS, started by young engineering graduates to overcome a problem they faced during their academic years. That is "Providing Solutions". They kept it as the motto for their company.

    • Phone: (+91) 90254 34960
    • Mail: sales@finalyearprojects.in
    Our Category
    • Java
    • Python
    • Embedded
    • Matlab
    • VLSI
    • Mechanical
    USEFUL LINKS
    • Privacy Policy
    • Returns
    • Terms & Conditions
    • Contact Us
    • Latest News
    • FAQ
    Mini Projects
    • Java
    • Python
    • Embedded
    • Matlab
    • VLSI
    Copyright Finalyearprojects.In 2024
    payments
    • Menu
    • Categories
    • Java
    • Python
    • Embedded
    • Machine Learning
    • Mechanical
    • Matlab
    • VLSI
    • Raspberry PI
    • Artificial Intelligence
    • Home
    • Shop
    • Blog
    • About us
    • Contact us
    • Wishlist
    • Compare
    • Login / Register
    Shopping cart
    Close
    Sign in
    Close

    Lost your password?

    OR
    Don't have an account? Signup

    No account yet?

    Create an Account

    HEY YOU, SIGN UP AND CONNECT TO GLOBAL TECHNO SOLUTIONS

    Be the first to learn about our latest trends and get exclusive offers

    Will be used in accordance with our Privacy Policy

    Shop
    0 Wishlist
    0 items Cart
    My account

    Back