Brain Tumor Detection and Classification Using Convolutional Neural Network (CNN)
- Blog
- Mini Projects
- Order cancellation
- Privacy policy
- Project Categories
- Return Policy
- Terms and Conditions
- Terms of use
- Discount
-
Projects
- Embedded
- Java
-
Matlab
- 5G Communication/Signal Processing
- ANTENNA Design
- Artificial intelligence
- Automation & Fault Detection
- Cryptography- Authentication
- Cyber Security
- Data Analytics
- Deep Learning
- Digital Image Processing
- GAN
- Machine Learning
- Matlab Hardware Interface
- Medical Imaging
- Robotic OS (ROS) - Hardware
- Robotic OS (ROS) - Simulation
- Web Application
- Mechanical
- Python
- VLSI
- Workshops
- Internship
Your shopping cart is empty!
Product Description
Aim:
To detect and identify the Brain Tumor using Deep-Learning techniques.
Abstract:
Medical image processing is that the one among the foremost demanding and promising field nowadays. Tumor is a rapid uncontrolled growth of cell. The tumor are often classified as benign, malignant and premalignant. When a tumor is noticed as malignant then the tumor results in cancer. Earlier stage of tumor is used to be detected manually through observation of image by doctors and it takes more time and sometimes gets inaccurate results. Today different computer added tool is employed in medical field. These tools provide a quick and accurate result. Magnetic Resonance Images (MRI) is the most widely used imaging technique for analyzing internal structure of human body. The MRI is used even in diagnosis of most severe disease of medical science like brain tumors. The brain tumor detection process consist of image processing techniques involves four stages. Image pre-processing, image segmentation, feature extraction, and finally classification.
Proposed System
Automated brain tumour detection is extremely necessary as high accuracy is required when human life is involved. Automated detection of tumor in MR images involves feature extraction and classification using machine learning algorithm. Our approach consists of three steps: (A) Brain image pre-processing, (B) Brain feature extraction, (C) brain tumour classification using web application. The input of the approach is that the brain images and therefore the output are the respective sort of the brain tumour.
When you order from finalyearprojects.in, you will receive a confirmation email. Once your order is shipped, you will be emailed the tracking information for your order's shipment. You can choose your preferred shipping method on the Order Information page during the checkout process.
The total time it takes to receive your order is shown below:
The total delivery time is calculated from the time your order is placed until the time it is delivered to you. Total delivery time is broken down into processing time and shipping time.
Processing time: The time it takes to prepare your item(s) to ship from our warehouse. This includes preparing your items, performing quality checks, and packing for shipment.
Shipping time: The time for your item(s) to tarvel from our warehouse to your destination.
Shipping from your local warehouse is significantly faster. Some charges may apply.
In addition, the transit time depends on where you're located and where your package comes from. If you want to know more information, please contact the customer service. We will settle your problem as soon as possible. Enjoy shopping!
Download Abstract
Click the below button to download the abstract.
Package Includes
Software Projects Includes
- Demo Video
- Abstract
- Base paper
- Full Project PPT
- UML Diagrams
- SRS
- Source Code
- Screen Shots
- Software Links
- Reference Papers
- Full Project Documentation
- Online support
The Delivery time for software projects is 2 -3 working days. Some of the software projects will require Hardware interface. Please go through the hardware Requirements in the abstract carefully. The Hardware will take 7-8 Working Days
Hardware Projects Includes
- Demo Video
- Abstract
- Base paper
- Full Project PPT
- Datasheets
- Circuit Diagrams
- Source Code
- Screen Shots & Photos
- Software Links
- Reference Papers
- Lit survey
- Full Project Documentation
- Online support
The Delivery time for Hardware
projects is 7-8 working days.
Mini Projects: Software Includes
- Demo Video
- Abstract
- Base paper
- Full Project PPT
- UML Diagrams
- SRS
- Source Code
- Screen Shots
- Software Links
- Reference Papers
- Full Project Documentation
- Online support
The
Delivery time for software Miniprojects is 2 -3 working days.
Mini Projects - Hardware includes
- Demo Video
- Abstract
- PPT
- Datasheets
- Circuit Diagrams
- Source Code
- Screen Shots & Photos
- Software Links
- Reference Papers
- Full Project Documentation
- Online
support
The Delivery time for Hardware Mini projects is 7-8 working days.