A Novel Integrated Approach for Stock Prediction Based on Modal Decomposition Technology and Machine Learning

5,500.00
To develop an enhanced stock price prediction model that leverages advanced deep learning techniques optimized feature engineering, and potentially external factors like sentiment analysis to achieve superior forecasting accuracy and robustness

ANALYSIS OF CHRONIC LIVER DISEASE DETECTION BY USING MACHINE LEARNING TECHNIQUES

5,500.00
Aim: The aim of this project is to develop a machine learning system for the early detection and prediction of chronic liver disease.

Enhancing Smishing Detection A Deep Learning Approach for Improved Accuracy and Reduced False Positives

5,500.00
The aim of this work is to explore and develop advanced methods for enhancing the detection and prevention of smishing attacks. This involves utilizing cutting-edge technologies such as machine learning, artificial intelligence, and behavioral analysis to identify and block fraudulent SMS messages, protecting users from financial and personal data theft. The goal is to create more effective, real-time detection systems to mitigate the growing threat of smishing attack

Predicting Market Performance Using Machine and Deep Learning Techniques

5,500.00
The aim of this study is to evaluate the effectiveness of various machine learning and deep learning algorithms, including LSTM networks, ARIMA models, and traditional machine learning techniques, for forecasting market prices. We analyze the performance of these models on stock historical datasets and compare their predictive accuracy to determine the most suitable approach for real-time market analysis. This research seeks to provide insights into the predictability of markets and support informed decision-making for investors