Welcome to Final Year Projects!!
  • Newsletter
  • +91 90254 34960
  • Contact Us
  • FAQs
Select category
  • Select category
  • Artificial Intelligence
  • Biomedical
  • Block Chain
  • Cloud Computing
  • Cyber Security
  • Data mining
  • Deep Learning
  • Embedded Components
  • Generative AI
  • IoT
  • LORA
  • Machine Learning
  • Mini Projects
    • Embedded
    • Java
    • Matlab
    • Python
    • VLSI
      • pipeline
  • Natural Language Processing
  • Projects
    • Embedded
      • Agriculture
      • Artificial Intelligence(AI)
      • Biomedical
      • Digital Twin
      • Federated Learning
      • Image Processing
      • Internet of Things(IoT)
      • LoRaWAN
      • Python Interface
      • Raspberry PI
      • Robotics
      • Social Cause
      • Wireless Sensor Network
    • Java
      • Android
      • Artificial Intelligence
      • Augmented Reality
      • Blockchain
      • Cloud Computing
      • Cybersecurity
      • Data Mining
      • Internet of Things (IoT)
      • Machine Learning
      • Secure Computing
      • Social Cause
    • Matlab
      • Cryptography- Authentication
      • Cyber Security
      • Deep Learning
      • Digital Image Processing
      • Machine Learning
      • Natural Language Processing
    • Python
      • Agent AI
      • Blockchain
      • Cybersecurity
      • Deep Learning
      • Explainable AI
      • Federated Learning
      • Generative AI
      • GPT
      • Graph Neural Network
      • Machine Learning
      • OpenCV
      • Quantum Encryption
      • Reinforcement Learning
    • VLSI
      • Low Power VLSI Design
      • On-Chip Cryptography
      • Self Repairing Technology
  • Robotics
  • Secure Computing
Login / Register
0 Wishlist
0 Compare
0 items ₹0.00
Menu
0 items ₹0.00
Browse Categories
  • Java
  • Python
  • Embedded
  • Machine Learning
  • Mechanical
  • Matlab
  • VLSI
  • Raspberry PI
  • Artificial Intelligence
  • Home
  • Shop
    • PROJECTS
      • PROJECTS
        • Java
        • Python
        • Embedded
        • Matlab
        • VLSI
        • Mechanical
    • MINI PROJECTS
      • PROJECTS
        • Java
        • Python
        • Matlab
        • VLSI
        • Embedded
    • WORKSHOPS
      • Workshops
        • Python
        • Robotics
        • Industry Visit
        • Raspberry Pi
        • Image Processing
        • Mechanical Engineering
        • VLSI
        • Arduino
        • Matlab
        • Machine Learning
        • Embedded
        • Android
        • IoT
    • INTERNSHIPS
      • Internships
        • Python
        • Machine learning
        • Artificial intelligence
        • Web development
        • Android
        • IoT / internet of things
        • Cloud Computing
        • Digital Marketing
        • Big Data
  • Journal paper
  • Blog
  • About us
  • Contact us
Click to enlarge
Home Projects Python Advancing Fake News Detection: Hybrid Deep Learning With FastText and Explainable AI
Incorporating Meteorological Data and Pesticide Information to Forecast Crop Yields Using Machine Learning
Incorporating Meteorological Data and Pesticide Information to Forecast Crop Yields Using Machine Learning ₹5,500.00
Back to products
Diagnosis of Liver Disease using ANN and MLAlgorithms with Hyperparameter Tuning
Diagnosis of Liver Disease using ANN and MLAlgorithms with Hyperparameter Tuning ₹5,500.00

Advancing Fake News Detection: Hybrid Deep Learning With FastText and Explainable AI

₹5,500.00

To develop a robust and explainable hybrid deep learning framework for detecting fake news by integrating advanced transformer-based models and explainable AI techniques, thereby enhancing classification accuracy, improving model generalization, and fostering transparency in decision-making

Watch Product Video
Compare
Add to wishlist
Categories: Machine Learning, Machine Learning, Python Tags: Machine Learning, NLP, Python Projects
Share:
  • Description
  • Reviews (0)
  • Software Download
  • Download Abstract
  • Shipping & Delivery
Description

Aim:

Ā Ā Ā Ā Ā Ā Ā Ā Ā  To develop a robust and explainable hybrid deep learning framework for detecting fake news by integrating advanced transformer-based models and explainable AI techniques, thereby enhancing classification accuracy, improving model generalization, and fostering transparency in decision-making

Abstract:

Ā Ā Ā Ā Ā Ā Ā Ā  With the rapid spread of fake news across social media and digital platforms, the need for effective detection systems has become increasingly urgent. Misinformation can significantly influence public opinion and decision-making, making it critical to develop reliable tools to identify fake news. This project aims to create a solution for detecting fake news using machine learning and deep learning techniques. By applying natural language processing (NLP) techniques such as stopword removal, tokenization, and lemmatization, we clean and process textual data to improve classification accuracy. We use machine learning algorithms like Random Forest, Extra Tree Classifiers, and Logistic Regression, along with deep learning models like Long Short-Term Memory (LSTM), to build a hybrid system for classifying news articles. The project is divided into two modules: one for classifying the title and one for classifying the text. Additionally, we combine multiple functions into a single pipeline for efficient prediction and apply explainable AI methods, such as LIME and ELI5, to make the model’s predictions more transparent. This approach helps in building a reliable and interpretable system for detecting fake news, contributing to the fight against misinformation online

Proposed System:

Ā Ā Ā Ā Ā Ā Ā Ā  This project introduces a robust fake news detection system combining machine learning, deep learning, and explainable AI techniques. The system preprocesses text using NLP techniques like stopword removal, tokenization, and lemmatization, followed by feature extraction using TF-IDF Vectorization. It is divided into two modules: one for title classification using Random Forest and another for text classification using a hybrid LSTM-GRU model. A unified pipeline integrates these modules for seamless and efficient predictions. Additionally, explainable AI tools such as LIME and ELI5 are employed to provide transparency into the model’s decision-making process, ensuring trust and interpretability. This approach enhances accuracy and reliability, addressing the limitations of existing systems.

Advantages:

  • The integration of machine learning, deep learning, and hybrid models ensures high accuracy in detecting fake news.
  • Separate modules for title and text classification allow for more focused and efficient processing.
  • A unified pipeline streamlines the prediction process, making it efficient and scalable for larger datasets.
  • Tools like LIME and ELI5 provide clear insights into the model’s decisions, enhancing trust and usability.
  • NLP techniques such as stopword removal, tokenization, and lemmatization improve the quality of input data, leading to better predictions.
Reviews (0)

Reviews

There are no reviews yet.

Be the first to review “Advancing Fake News Detection: Hybrid Deep Learning With FastText and Explainable AI” Cancel reply

Your email address will not be published. Required fields are marked *


The reCAPTCHA verification period has expired. Please reload the page.

Software Download

You must be logged in to download the software.

Download Abstract

You must be logged in to download the abstract.

Shipping & Delivery
wd-ship-1
wd-ship-2

MAECENAS IACULIS

Vestibulum curae torquent diam diam commodo parturient penatibus nunc dui adipiscing convallis bulum parturient suspendisse parturient a.Parturient in parturient scelerisque nibh lectus quam a natoque adipiscing a vestibulum hendrerit et pharetra fames nunc natoqueĀ dui.

ADIPISCING CONVALLIS BULUM

  • Vestibulum penatibus nunc dui adipiscing convallis bulum parturient suspendisse.
  • Abitur parturient praesent lectus quam a natoque adipiscing a vestibulum hendre.
  • Diam parturient dictumst parturient scelerisque nibh lectus.

Scelerisque adipiscing bibendum sem vestibulum et in a a a purus lectus faucibus lobortis tincidunt purus lectus nisl class eros.Condimentum a et ullamcorper dictumst mus et tristique elementum nam inceptos hac parturient scelerisqueĀ vestibulum amet elit ut volutpat.

Related products

Compare

Integration of Traditional Knowledge and Modern Science: A Holistic Approach to Identify Medicinal Leaves for Curing Diseases

Python, Machine Learning, Projects, Artificial Intelligence, Machine Learning
₹5,500.00
Aim: The aim of this project is to develop and implement a holistic methodology for identifying and evaluating medicinal leaves with the potential to treat various diseases.
Add to wishlist
Add to cart
Quick view
New
Compare

Medical Chatbot

Projects, Python, Deep Learning, Deep Learning
₹5,500.00
Aim: Ā Ā Ā Ā Ā Ā Ā Ā  To create a chatbot that predicts medical conditions from images and provides disease-specific information, treatment options, and patient
Add to wishlist
Add to cart
Quick view
Compare

Multi-Fruit Classification and Grading Using a Same-Domain Transfer Learning Approach

Projects, Python, Deep Learning, Deep Learning
₹5,500.00
To develop an advanced fruit classification and grading system using deep learning models (EfficientNetV2-B3, ResNet152V2, and ResNet50V2) for comparative analysis and to implement an alert mechanism for detecting bad-quality fruits.
Add to wishlist
Add to cart
Quick view
Compare

Plant Disease Detection Using Machine Learning Techniques

Python, Machine Learning, Projects
₹5,500.00
Aim: Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā  We proposed a complete systematic approach to detect Plant disease using Machine Learning algorithm. Ā Abstract: Ā Ā Ā Ā Ā Ā Ā  This paper
Add to wishlist
Add to cart
Quick view
Compare

Predicting Market Performance Using Machine and Deep Learning Techniques

Python, Deep Learning, Deep Learning
₹5,500.00
The aim of this study is to evaluate the effectiveness of various machine learning and deep learning algorithms, including LSTM networks, ARIMA models, and traditional machine learning techniques, for forecasting market prices. We analyze the performance of these models on stock historical datasets and compare their predictive accuracy to determine the most suitable approach for real-time market analysis. This research seeks to provide insights into the predictability of markets and support informed decision-making for investors
Add to wishlist
Add to cart
Quick view
Compare

Real-Time Plant Disease Dataset Development and Detection of Plant Disease Using Deep Learning

Projects, Python, Deep Learning, Artificial Intelligence, Deep Learning
₹5,500.00
Aim: The primary aim of this project is to develop an advanced plant disease detection system that leverages state-of-the-art deep learning architectures, such as ResNet152V2 and EfficientNetV2B3, to achieve higher accuracy, scalability, and efficiency.
Add to wishlist
Add to cart
Quick view
Compare

Toward Improving Breast Cancer Classification Using an Adaptive Voting Ensemble Learning Algorithm

Python, Machine Learning, Projects, Artificial Intelligence, Machine Learning
₹5,500.00
Aim: The primary aim of this study is to develop a robust and accurate auxiliary diagnostic system for breast cancer by integrating machine learning techniques with a hybrid strategy.
Add to wishlist
Add to cart
Quick view
Compare

Whale and Dolphin Classification

Projects, Python, Deep Learning, Deep Learning
₹5,500.00
The proposed method involves a multi-step process to classify whale and dolphin species from images. First, the dataset is collected and pre-processed to ensure high-quality input data. The VGG16 model is used to extract features from the images, capturing complex patterns and details. These features are then used to train a Support Vector Machine (SVM) model, which excels in binary and multi-class classification tasks.
Add to wishlist
Add to cart
Quick view

    Global Techno Solutions - GTS, started by young engineering graduates to overcome a problem they faced during their academic years. That is "Providing Solutions". They kept it as the motto for their company.

    • Phone: (+91) 90254 34960
    • Mail: sales@finalyearprojects.in
    Our Category
    • Java
    • Python
    • Embedded
    • Matlab
    • VLSI
    • Mechanical
    USEFUL LINKS
    • Privacy Policy
    • Returns
    • Terms & Conditions
    • Contact Us
    • Latest News
    • FAQ
    Mini Projects
    • Java
    • Python
    • Embedded
    • Matlab
    • VLSI
    Copyright Finalyearprojects.In 2024
    payments
    • Menu
    • Categories
    • Java
    • Python
    • Embedded
    • Machine Learning
    • Mechanical
    • Matlab
    • VLSI
    • Raspberry PI
    • Artificial Intelligence
    • Home
    • Shop
    • Blog
    • About us
    • Contact us
    • Wishlist
    • Compare
    • Login / Register
    Shopping cart
    Close
    Sign in
    Close

    Lost your password?

    OR
    Don't have an account? Signup

    No account yet?

    Create an Account

    HEY YOU, SIGN UP AND CONNECT TO GLOBAL TECHNO SOLUTIONS

    Be the first to learn about our latest trends and get exclusive offers

    Will be used in accordance with ourĀ Privacy Policy

    Shop
    0 Wishlist
    0 items Cart
    My account

    Back