Welcome to Final Year Projects!!
  • Newsletter
  • +91 90254 34960
  • Contact Us
  • FAQs
Select category
  • Select category
  • Artificial Intelligence
  • Biomedical
  • Block Chain
  • Cloud Computing
  • Cyber Security
  • Data mining
  • Deep Learning
  • Embedded Components
  • Generative AI
  • IoT
  • LORA
  • Machine Learning
  • Mini Projects
    • Embedded
    • Java
    • Matlab
    • Python
    • VLSI
      • pipeline
  • Natural Language Processing
  • Projects
    • Embedded
      • Agriculture
      • Artificial Intelligence(AI)
      • Biomedical
      • Digital Twin
      • Image Processing
      • Internet of Things(IoT)
      • LoRaWAN
      • Raspberry PI
      • Robotics
      • Social Cause
    • Java
      • Android
      • Blockchain
      • Cloud Computing
      • Data Mining
      • Internet of Things (IoT)
      • Machine Learning
      • Secure Computing
    • Matlab
      • Cryptography- Authentication
      • Cyber Security
      • Deep Learning
      • Digital Image Processing
      • Machine Learning
      • Natural Language Processing
    • Mechanical
      • Automation
      • Automobile
      • Design and Analysis
      • Fabrication
      • Pnumatics
    • Python
      • Blockchain
      • Cybersecurity
      • Deep Learning
      • Explainable AI
      • Generative AI
      • GPT
      • Machine Learning
      • OpenCV
    • VLSI
      • Low Power VLSI Design
      • On-Chip Cryptography
      • Self Repairing Technology
  • Robotics
  • Secure Computing
Login / Register
0 Wishlist
0 Compare
0 items ₹0.00
Menu
0 items ₹0.00
Browse Categories
  • Java
  • Python
  • Embedded
  • Machine Learning
  • Mechanical
  • Matlab
  • VLSI
  • Raspberry PI
  • Artificial Intelligence
  • Home
  • Shop
    • PROJECTS
      • PROJECTS
        • Java
        • Python
        • Embedded
        • Matlab
        • VLSI
        • Mechanical
    • MINI PROJECTS
      • PROJECTS
        • Java
        • Python
        • Matlab
        • VLSI
        • Embedded
    • WORKSHOPS
      • Workshops
        • Python
        • Robotics
        • Industry Visit
        • Raspberry Pi
        • Image Processing
        • Mechanical Engineering
        • VLSI
        • Arduino
        • Matlab
        • Machine Learning
        • Embedded
        • Android
        • IoT
    • INTERNSHIPS
      • Internships
        • Python
        • Machine learning
        • Artificial intelligence
        • Web development
        • Android
        • IoT / internet of things
        • Cloud Computing
        • Digital Marketing
        • Big Data
  • Journal paper
  • Blog
  • About us
  • Contact us
Click to enlarge
Home Projects Python Automated Brain Tumor Segmentation and Classification in MRI using YOLO-based Deep Learning
Product Recommendation System Using Large Language Model Llama 3
Product Recommendation System Using Large Language Model Llama 3 ₹5,500.00
Back to products
LE-YOLO: Lightweight and Efficient Detection Model for Wind Turbine Blade Defects Based on Improved YOLO
LE-YOLO: Lightweight and Efficient Detection Model for Wind Turbine Blade Defects Based on Improved YOLO ₹5,500.00

Automated Brain Tumor Segmentation and Classification in MRI using YOLO-based Deep Learning

₹5,500.00

The aim of this research is to develop a more effective and efficient brain tumor segmentation system using the YOLOv11 architecture. The focus is on enhancing the accuracy and reliability of tumor identification in brain imaging, specifically through advanced segmentation techniques. By leveraging deep learning models, the study seeks to provide an automated solution for real-time tumor segmentation, assisting in clinical decision-making and early diagnosis.

Watch Product Video
Compare
Add to wishlist
Categories: Artificial Intelligence, Deep Learning, Deep Learning, Generative AI, Generative AI, Projects, Python Tags: Brain Tumor, Deep Learning, Image Classification, MRI Images, Segmentation, Yolov11
Share:
  • Description
  • Reviews (0)
  • Software Download
  • Download Abstract
  • Shipping & Delivery
Description

Aim:

         The aim of this research is to develop a more effective and efficient brain tumor segmentation system using the YOLOv11 architecture. The focus is on enhancing the accuracy and reliability of tumor identification in brain imaging, specifically through advanced segmentation techniques. By leveraging deep learning models, the study seeks to provide an automated solution for real-time tumor segmentation, assisting in clinical decision-making and early diagnosis.

Abstract:

         Brain tumor identification plays a critical role in medical imaging, enabling the detection of abnormalities in the brain through various imaging techniques like MRI, CT scans, and PET scans. This paper outlines the evolution of automated approaches for tumor segmentation, emphasizing the advancements enabled by machine learning and deep learning methods. These techniques involve preprocessing, feature extraction, and classification strategies designed to distinguish tumor areas from healthy tissues. However, challenges such as noise interference, tumor diversity, and computational complexity persist, requiring ongoing research to enhance segmentation accuracy and computational efficiency.

       The abstract highlights the growing significance of robust segmentation systems in clinical practice for early diagnosis, treatment planning, and monitoring patients with brain tumors. A major contribution of this study is the exploration of YOLOv8’s application in brain tumor segmentation, which has demonstrated effective tumor localization within medical images. This research aims to further refine the YOLOv11 architecture, incorporating segmentation techniques to improve tumor segmentation accuracy and provide more detailed insights into the location and shape of tumors.

Introduction:

       Brain tumor segmentation is a vital aspect of neuroimaging, crucial for early diagnosis and treatment planning. The ability to identify and segment tumors in brain images can significantly impact patient outcomes by facilitating timely interventions. With advancements in imaging technologies such as MRI and CT scans, the potential for using machine learning and deep learning models to automate and enhance brain tumor identification has grown significantly.

         YOLO (You Only Look Once), a state-of-the-art real-time object detection framework, has been applied to brain tumor identification with notable success, showing its capability to efficiently process medical images. However, the traditional YOLO model is primarily designed for object detection, which may not always be optimal for the nuanced task of tumor segmentation. This study introduces YOLOv8, which utilizes a more advanced approach to tumor segmentation, enabling more precise detection of tumor boundaries. By integrating segmentation with classification, this research aims to offer a more accurate tool for identifying brain tumors, ultimately aiding in early diagnosis and better treatment planning.

Existing System:

           The existing system primarily focuses on brain tumor segmentation using YOLOv5 and YOLOv7 models, which provide real-time segmentation capabilities. These systems are built on convolutional neural networks (CNNs) that process medical images like MRI scans to segment brain lesions. YOLO’s architecture, with its multi-convolutional layers and use of max pooling, allows the model to extract significant features from images. The architecture is divided into a head and a backbone, with the backbone focusing on feature extraction and the head performing segmentation.

          The method typically uses an SPPF (Spatial Pyramid Pooling Fast) layer to perform pooling at multiple levels in a single instance before passing the features through a classifier for segmentation. While these systems have been successful in segmenting tumors, they are limited in accurately delineating the tumor region, especially when dealing with tumors of varying sizes and shapes. Additionally, these systems may struggle with noise and image artifacts, which affect segmentation accuracy. Despite this, the system has seen widespread application in clinical settings, providing essential support for early diagnosis and treatment planning.

Disadvantages:

           While the existing YOLO-based tumor segmentation systems have proven effective, they fall short in accurately segmenting tumor regions. The primary limitation is that the segmentation models may not fully capture the complex variations in tumor shapes, sizes, and locations. Noise in medical images, such as artifacts from MRI scans, can significantly degrade the performance of segmentation models, leading to false positives or inaccurate segmentation. Additionally, the computational complexity associated with processing high-resolution medical images in real-time remains a challenge, requiring high-performance hardware and optimization techniques that are not always available in clinical environments.

Proposed System:

        The proposed system introduces a novel approach by employing YOLOv11 with improved segmentation capabilities to enhance tumor delineation. Unlike traditional YOLO models, which focus primarily on object detection, YOLOv11 incorporates advanced segmentation features to delineate the exact boundaries of tumors in brain imaging. This improvement allows for more precise tumor localization and better visualization of the tumor’s size and shape.

        The segmentation approach leverages advanced convolutional neural network techniques, including multi-scale feature extraction and spatial pyramid pooling, which help handle diverse tumor shapes and sizes. The model is trained on a large dataset of MRI images, with preprocessing steps designed to reduce noise and enhance image quality. By refining segmentation techniques, the proposed system aims to offer a more comprehensive tool for brain tumor diagnosis, providing clinicians with detailed insights into tumor characteristics for more effective treatment planning.

Advantages:

        The proposed YOLOv11 segmentation model offers several advantages over existing segmentation models. The most significant advantage is its ability to perform precise tumor segmentation, which enables clinicians to visualize tumor boundaries clearly. This detailed segmentation improves the accuracy of diagnosis and provides critical information for treatment planning, such as tumor size and location. By using multi-scale feature extraction and advanced pooling techniques, the model can handle tumors of varying sizes and shapes, addressing one of the major challenges in tumor segmentation. Additionally, the use of YOLOv11 allows for real-time processing, enabling rapid tumor identification and segmentation in clinical environments.

Reviews (0)

Reviews

There are no reviews yet.

Be the first to review “Automated Brain Tumor Segmentation and Classification in MRI using YOLO-based Deep Learning” Cancel reply

Your email address will not be published. Required fields are marked *


The reCAPTCHA verification period has expired. Please reload the page.

Software Download

You must be logged in to download the software.

Download Abstract

You must be logged in to download the abstract.

Shipping & Delivery
wd-ship-1
wd-ship-2

MAECENAS IACULIS

Vestibulum curae torquent diam diam commodo parturient penatibus nunc dui adipiscing convallis bulum parturient suspendisse parturient a.Parturient in parturient scelerisque nibh lectus quam a natoque adipiscing a vestibulum hendrerit et pharetra fames nunc natoque dui.

ADIPISCING CONVALLIS BULUM

  • Vestibulum penatibus nunc dui adipiscing convallis bulum parturient suspendisse.
  • Abitur parturient praesent lectus quam a natoque adipiscing a vestibulum hendre.
  • Diam parturient dictumst parturient scelerisque nibh lectus.

Scelerisque adipiscing bibendum sem vestibulum et in a a a purus lectus faucibus lobortis tincidunt purus lectus nisl class eros.Condimentum a et ullamcorper dictumst mus et tristique elementum nam inceptos hac parturient scelerisque vestibulum amet elit ut volutpat.

Related products

Compare

Advancing Fake News Detection: Hybrid Deep Learning With FastText and Explainable AI

Python, Machine Learning, Machine Learning
₹5,500.00
To develop a robust and explainable hybrid deep learning framework for detecting fake news by integrating advanced transformer-based models and explainable AI techniques, thereby enhancing classification accuracy, improving model generalization, and fostering transparency in decision-making
Add to wishlist
Add to cart
Quick view
Compare

Deep Fake Video Detection Using Transfer learning

Projects, Python, Deep Learning, Deep Learning
₹5,500.00

Aim:

      To enhance deep fake detection by extracting facial features using FaceNet512 and training these features with transfer learning models. Upon detecting deep fake content, the system will automatically send an email alert with the manipulated image.

Add to wishlist
Add to cart
Quick view
Compare

Deep Learning Model for Driver Behavior Detection in Cyber-Physical System-Based Intelligent Transport Systems

Projects, Python, Deep Learning, Artificial Intelligence, Deep Learning
₹5,500.00
Aim: To develop a real-time system for detecting and alerting drowsiness in drivers using YOLOv8 object detection.
Add to wishlist
Add to cart
Quick view
Compare

Integration of Traditional Knowledge and Modern Science: A Holistic Approach to Identify Medicinal Leaves for Curing Diseases

Python, Machine Learning, Projects, Artificial Intelligence, Machine Learning
₹5,500.00
Aim: The aim of this project is to develop and implement a holistic methodology for identifying and evaluating medicinal leaves with the potential to treat various diseases.
Add to wishlist
Add to cart
Quick view
Compare

Lung Nodule Detection in Medical Images Based on Improved YOLOv5

Python, Generative AI, Projects, Deep Learning, Generative AI, Artificial Intelligence, Deep Learning
₹5,500.00
Aim: To enhance the YOLOv8 model for achieving high-performance object detection in medical imaging and other specialized applications.
Add to wishlist
Add to cart
Quick view
Compare

Multi-Fruit Classification and Grading Using a Same-Domain Transfer Learning Approach

Projects, Python, Deep Learning, Deep Learning
₹5,500.00
To develop an advanced fruit classification and grading system using deep learning models (EfficientNetV2-B3, ResNet152V2, and ResNet50V2) for comparative analysis and to implement an alert mechanism for detecting bad-quality fruits.
Add to wishlist
Add to cart
Quick view
Compare

Road Traffic Accident Risk Prediction and Key Factor Identification Framework Based on Explainable Deep Learning

Projects, Python, Deep Learning, Artificial Intelligence, Deep Learning
₹5,500.00
Aim: The aim of this study is to develop a robust and accurate traffic accident risk prediction model by leveraging deep learning techniques such as CNN (Convolutional Neural Network), BiLSTM (Bi-directional Long Short-Term Memory), and GRU (Gated Recurrent Unit) models.
Add to wishlist
Add to cart
Quick view
Compare

Social Media Forensics an Adaptive Cyberbullying-Related Hate Speech Detection Approach Based on Neural Networks with Uncertainty

Projects, Python, Cybersecurity, Deep Learning, Cyber Security, Deep Learning
₹5,500.00
Aim: To propose an approach that improves the accuracy and efficiency of cyberbullying detection in social media text by utilizing an advanced model that aims to overcome ambiguity and classification challenges.
Add to wishlist
Add to cart
Quick view

    Global Techno Solutions - GTS, started by young engineering graduates to overcome a problem they faced during their academic years. That is "Providing Solutions". They kept it as the motto for their company.

    • Phone: (+91) 90254 34960
    • Mail: sales@finalyearprojects.in
    Our Category
    • Java
    • Python
    • Embedded
    • Matlab
    • VLSI
    • Mechanical
    USEFUL LINKS
    • Privacy Policy
    • Returns
    • Terms & Conditions
    • Contact Us
    • Latest News
    • FAQ
    Mini Projects
    • Java
    • Python
    • Embedded
    • Matlab
    • VLSI
    Copyright Finalyearprojects.In 2024
    payments
    • Menu
    • Categories
    • Java
    • Python
    • Embedded
    • Machine Learning
    • Mechanical
    • Matlab
    • VLSI
    • Raspberry PI
    • Artificial Intelligence
    • Home
    • Shop
    • Blog
    • About us
    • Contact us
    • Wishlist
    • Compare
    • Login / Register
    Shopping cart
    Close
    Sign in
    Close

    Lost your password?

    OR
    Don't have an account? Signup

    No account yet?

    Create an Account

    HEY YOU, SIGN UP AND CONNECT TO GLOBAL TECHNO SOLUTIONS

    Be the first to learn about our latest trends and get exclusive offers

    Will be used in accordance with our Privacy Policy

    Shop
    0 Wishlist
    0 items Cart
    My account

    Back