Welcome to Final Year Projects!!
  • Newsletter
  • +91 90254 34960
  • Contact Us
  • FAQs
Select category
  • Select category
  • Artificial Intelligence
  • Biomedical
  • Block Chain
  • Cloud Computing
  • Cyber Security
  • Data mining
  • Deep Learning
  • Embedded Components
  • Generative AI
  • IoT
  • LORA
  • Machine Learning
  • Mini Projects
    • Embedded
    • Java
    • Matlab
    • Python
    • VLSI
      • pipeline
  • Natural Language Processing
  • Projects
    • Embedded
      • Agriculture
      • Artificial Intelligence(AI)
      • Biomedical
      • Digital Twin
      • Federated Learning
      • Image Processing
      • Internet of Things(IoT)
      • LoRaWAN
      • Python Interface
      • Raspberry PI
      • Robotics
      • Social Cause
      • Wireless Sensor Network
    • Java
      • Android
      • Artificial Intelligence
      • Augmented Reality
      • Blockchain
      • Cloud Computing
      • Cybersecurity
      • Data Mining
      • Internet of Things (IoT)
      • Machine Learning
      • Secure Computing
      • Social Cause
    • Matlab
      • Cryptography- Authentication
      • Cyber Security
      • Deep Learning
      • Digital Image Processing
      • Machine Learning
      • Natural Language Processing
    • Python
      • Agent AI
      • Blockchain
      • Cybersecurity
      • Deep Learning
      • Explainable AI
      • Federated Learning
      • Generative AI
      • GPT
      • Graph Neural Network
      • Machine Learning
      • OpenCV
      • Quantum Encryption
      • Reinforcement Learning
    • VLSI
      • Low Power VLSI Design
      • On-Chip Cryptography
      • Self Repairing Technology
  • Robotics
  • Secure Computing
Login / Register
0 Wishlist
0 Compare
0 items ₹0.00
Menu
0 items ₹0.00
Browse Categories
  • Java
  • Python
  • Embedded
  • Machine Learning
  • Mechanical
  • Matlab
  • VLSI
  • Raspberry PI
  • Artificial Intelligence
  • Home
  • Shop
    • PROJECTS
      • PROJECTS
        • Java
        • Python
        • Embedded
        • Matlab
        • VLSI
        • Mechanical
    • MINI PROJECTS
      • PROJECTS
        • Java
        • Python
        • Matlab
        • VLSI
        • Embedded
    • WORKSHOPS
      • Workshops
        • Python
        • Robotics
        • Industry Visit
        • Raspberry Pi
        • Image Processing
        • Mechanical Engineering
        • VLSI
        • Arduino
        • Matlab
        • Machine Learning
        • Embedded
        • Android
        • IoT
    • INTERNSHIPS
      • Internships
        • Python
        • Machine learning
        • Artificial intelligence
        • Web development
        • Android
        • IoT / internet of things
        • Cloud Computing
        • Digital Marketing
        • Big Data
  • Journal paper
  • Blog
  • About us
  • Contact us
Click to enlarge
Home Projects Python Obfuscated Privacy Malware Classification Using Machine Learning and Deep Learning Techniques
Recognition of Fish in Aqua Cage by Machine Learning with Image Enhancement
Recognition of Fish in Aqua Cage by Machine Learning with Image Enhancement ₹5,500.00
Back to products
A Novel Transformer Model With Multiple Instance Learning for Diabetic Retinopathy Classification
A Novel Transformer Model With Multiple Instance Learning for Diabetic Retinopathy Classification ₹5,500.00

Obfuscated Privacy Malware Classification Using Machine Learning and Deep Learning Techniques

₹5,500.00

Aim

The aim of this research is to develop an intelligent system capable of detecting and classifying obfuscated privacy malware into various categories and families. This system leverages machine learning and deep learning models trained on the CIC-MalMem-2022 dataset to improve accuracy and address the challenges posed by data imbalance and complex malware behaviour.

Watch Product Video
Compare
Add to wishlist
Categories: Artificial Intelligence, Cyber Security, Cybersecurity, Deep Learning, Deep Learning, Machine Learning, Machine Learning, Python Tags: Deep Learning, DNN, Machine Learning, Malware Classification, obfuscation, SMOTE
Share:
  • Description
  • Reviews (0)
  • Software Download
  • Download Abstract
  • Shipping & Delivery
Description

Aim

Ā Ā Ā Ā Ā Ā  The aim of this research is to develop an intelligent system capable of detecting and classifying obfuscated privacy malware into various categories and families. This system leverages machine learning and deep learning models trained on the CIC-MalMem-2022 dataset to improve accuracy and address the challenges posed by data imbalance and complex malware behaviour.

Abstract

Ā Ā Ā Ā Ā Ā Ā  Malware that targets user privacy has seen significant growth in recent years, fuelled by global digital adoption and the increasing reliance on e-commerce and online services. Privacy-focused malware often uses obfuscation techniques to evade detection, making it difficult for traditional systems to identify and classify them. In this study, we utilize the CIC-MalMem-2022 dataset, based on memory dumping analysis, to train three classifiers: a binary classifier to differentiate between benign and malicious samples, a category classifier to identify benign, spyware, ransomware, and trojan horse samples, and a family classifier capable of recognizing 16 specific malware families.

Ā Ā Ā Ā Ā Ā Ā  To overcome the challenges of imbalanced datasets, the Synthetic Minority Oversampling Technique (SMOTE) was applied. Models were trained using both traditional machine learning algorithms and a Deep Neural Network (DNN). Experimental results highlight the superior performance of the DNN, particularly in multiclass classification tasks, making it a viable solution for enhancing malware protection systems.

Existing System

Ā Ā Ā Ā Ā Ā Ā  Existing malware detection systems primarily rely on signature-based methods, which are effective for known malware but fail to address polymorphic and obfuscated malware. Heuristic approaches offer improvements but are limited in their ability to generalize across new or unseen malware families. While machine learning techniques have shown promise in detecting binary classifications of malware, their performance in multiclass scenarios, particularly with obfuscated malware, is inadequate. The reliance on imbalanced datasets further reduces the effectiveness of traditional systems, making advanced approaches necessary.

Problem Definition

Ā Ā Ā Ā Ā Ā  Obfuscated privacy malware poses a significant challenge to cybersecurity due to its ability to mask behaviour and evade traditional detection mechanisms. The complex and polymorphic nature of such malware makes it difficult to identify patterns that distinguish malicious activity. Moreover, the imbalanced distribution of benign and malicious samples in available datasets hinders the performance of machine learning models. Effective detection and classification of such malware demand advanced techniques capable of handling both data imbalance and behavioural complexity.

Proposed System

Ā Ā Ā Ā Ā Ā  This study proposes a comprehensive approach to malware detection and classification using memory dumping observations from the CIC-MalMem-2022 dataset. The proposed system includes three classifiers: a binary classifier to differentiate benign and malicious samples, a category classifier to group samples into benign, spyware, ransomware, and trojan horse classes, and a family classifier to identify 16 specific malware families. By integrating SMOTE for dataset balancing and leveraging deep learning architectures such as the DNN, the system achieves enhanced detection accuracy. Additionally, a user-friendly web application is developed to provide real-time malware prediction and visualization.

Advantages

The proposed system offers several advantages, including:

  1. High accuracy in malware detection and classification, especially in multiclass scenarios.
  2. Robustness against data imbalance through the application of SMOTE.
  3. Scalability to accommodate new malware families and evolving threats.
  4. User-friendly web interface for real-time malware detection and user interaction.
Reviews (0)

Reviews

There are no reviews yet.

Be the first to review “Obfuscated Privacy Malware Classification Using Machine Learning and Deep Learning Techniques” Cancel reply

Your email address will not be published. Required fields are marked *


The reCAPTCHA verification period has expired. Please reload the page.

Software Download

You must be logged in to download the software.

Download Abstract

You must be logged in to download the abstract.

Shipping & Delivery
wd-ship-1
wd-ship-2

MAECENAS IACULIS

Vestibulum curae torquent diam diam commodo parturient penatibus nunc dui adipiscing convallis bulum parturient suspendisse parturient a.Parturient in parturient scelerisque nibh lectus quam a natoque adipiscing a vestibulum hendrerit et pharetra fames nunc natoqueĀ dui.

ADIPISCING CONVALLIS BULUM

  • Vestibulum penatibus nunc dui adipiscing convallis bulum parturient suspendisse.
  • Abitur parturient praesent lectus quam a natoque adipiscing a vestibulum hendre.
  • Diam parturient dictumst parturient scelerisque nibh lectus.

Scelerisque adipiscing bibendum sem vestibulum et in a a a purus lectus faucibus lobortis tincidunt purus lectus nisl class eros.Condimentum a et ullamcorper dictumst mus et tristique elementum nam inceptos hac parturient scelerisqueĀ vestibulum amet elit ut volutpat.

Related products

Compare

Evasion Attacks and Defense Mechanisms for Machine Learning-Based Web Phishing Classifiers

Python, Machine Learning, Machine Learning
₹5,500.00
The aim of this research is to develop an advanced phishing detection system that leverages a hybrid machine learning approach to analyse URLs effectively and accurately identify potential phishing attempts.
Add to wishlist
Add to cart
Quick view
Compare

Integration of Traditional Knowledge and Modern Science: A Holistic Approach to Identify Medicinal Leaves for Curing Diseases

Python, Machine Learning, Projects, Artificial Intelligence, Machine Learning
₹5,500.00
Aim: The aim of this project is to develop and implement a holistic methodology for identifying and evaluating medicinal leaves with the potential to treat various diseases.
Add to wishlist
Add to cart
Quick view
Compare

Lung Nodule Detection in Medical Images Based on Improved YOLOv5

Python, Generative AI, Projects, Deep Learning, Generative AI, Artificial Intelligence, Deep Learning
₹5,500.00
Aim: To enhance the YOLOv8 model for achieving high-performance object detection in medical imaging and other specialized applications.
Add to wishlist
Add to cart
Quick view
New
Compare

Medical Chatbot

Projects, Python, Deep Learning, Deep Learning
₹5,500.00
Aim: Ā Ā Ā Ā Ā Ā Ā Ā  To create a chatbot that predicts medical conditions from images and provides disease-specific information, treatment options, and patient
Add to wishlist
Add to cart
Quick view
Compare

Predicting Market Performance Using Machine and Deep Learning Techniques

Python, Deep Learning, Deep Learning
₹5,500.00
The aim of this study is to evaluate the effectiveness of various machine learning and deep learning algorithms, including LSTM networks, ARIMA models, and traditional machine learning techniques, for forecasting market prices. We analyze the performance of these models on stock historical datasets and compare their predictive accuracy to determine the most suitable approach for real-time market analysis. This research seeks to provide insights into the predictability of markets and support informed decision-making for investors
Add to wishlist
Add to cart
Quick view
Compare

Real-Time Plant Disease Dataset Development and Detection of Plant Disease Using Deep Learning

Projects, Python, Deep Learning, Artificial Intelligence, Deep Learning
₹5,500.00
Aim: The primary aim of this project is to develop an advanced plant disease detection system that leverages state-of-the-art deep learning architectures, such as ResNet152V2 and EfficientNetV2B3, to achieve higher accuracy, scalability, and efficiency.
Add to wishlist
Add to cart
Quick view
Compare

Social Media Forensics an Adaptive Cyberbullying-Related Hate Speech Detection Approach Based on Neural Networks with Uncertainty

Projects, Python, Cybersecurity, Deep Learning, Cyber Security, Deep Learning
₹5,500.00
Aim: To propose an approach that improves the accuracy and efficiency of cyberbullying detection in social media text by utilizing an advanced model that aims to overcome ambiguity and classification challenges.
Add to wishlist
Add to cart
Quick view
Compare

Time Series Forecasting and Modeling of Food Demand Supply Chain Based on Regressors Analysis

Projects, Python, Machine Learning, Machine Learning
₹5,500.00
Aim: Ā Ā Ā Ā Ā Ā  To Develop a methodology that combines the robustness of ARIMA and SARIMA models with the explanatory power of
Add to wishlist
Add to cart
Quick view

    Global Techno Solutions - GTS, started by young engineering graduates to overcome a problem they faced during their academic years. That is "Providing Solutions". They kept it as the motto for their company.

    • Phone: (+91) 90254 34960
    • Mail: sales@finalyearprojects.in
    Our Category
    • Java
    • Python
    • Embedded
    • Matlab
    • VLSI
    • Mechanical
    USEFUL LINKS
    • Privacy Policy
    • Returns
    • Terms & Conditions
    • Contact Us
    • Latest News
    • FAQ
    Mini Projects
    • Java
    • Python
    • Embedded
    • Matlab
    • VLSI
    Copyright Finalyearprojects.In 2024
    payments
    • Menu
    • Categories
    • Java
    • Python
    • Embedded
    • Machine Learning
    • Mechanical
    • Matlab
    • VLSI
    • Raspberry PI
    • Artificial Intelligence
    • Home
    • Shop
    • Blog
    • About us
    • Contact us
    • Wishlist
    • Compare
    • Login / Register
    Shopping cart
    Close
    Sign in
    Close

    Lost your password?

    OR
    Don't have an account? Signup

    No account yet?

    Create an Account

    HEY YOU, SIGN UP AND CONNECT TO GLOBAL TECHNO SOLUTIONS

    Be the first to learn about our latest trends and get exclusive offers

    Will be used in accordance with ourĀ Privacy Policy

    Shop
    0 Wishlist
    0 items Cart
    My account

    Back