Welcome to Final Year Projects!!
  • Newsletter
  • +91 90254 34960
  • Contact Us
  • FAQs
Select category
  • Select category
  • Artificial Intelligence
  • Biomedical
  • Block Chain
  • Cloud Computing
  • Cyber Security
  • Data mining
  • Deep Learning
  • Embedded Components
  • Generative AI
  • IoT
  • LORA
  • Machine Learning
  • Mini Projects
    • Embedded
    • Java
    • Matlab
    • Python
    • VLSI
      • pipeline
  • Natural Language Processing
  • Projects
    • Embedded
      • Agriculture
      • Artificial Intelligence(AI)
      • Biomedical
      • Digital Twin
      • Image Processing
      • Internet of Things(IoT)
      • LoRaWAN
      • Raspberry PI
      • Robotics
      • Social Cause
    • Java
      • Android
      • Augmented Reality
      • Blockchain
      • Cloud Computing
      • Data Mining
      • Internet of Things (IoT)
      • Machine Learning
      • Secure Computing
    • Matlab
      • Cryptography- Authentication
      • Cyber Security
      • Deep Learning
      • Digital Image Processing
      • Machine Learning
      • Natural Language Processing
    • Python
      • Agent AI
      • Blockchain
      • Cybersecurity
      • Deep Learning
      • Explainable AI
      • Generative AI
      • GPT
      • Machine Learning
      • OpenCV
    • VLSI
      • Low Power VLSI Design
      • On-Chip Cryptography
      • Self Repairing Technology
  • Robotics
  • Secure Computing
  • Uncategorized
Login / Register
0 Wishlist
0 Compare
2 items ₹11,000.00
Menu
2 items ₹11,000.00
Browse Categories
  • Java
  • Python
  • Embedded
  • Machine Learning
  • Mechanical
  • Matlab
  • VLSI
  • Raspberry PI
  • Artificial Intelligence
  • Home
  • Shop
    • PROJECTS
      • PROJECTS
        • Java
        • Python
        • Embedded
        • Matlab
        • VLSI
        • Mechanical
    • MINI PROJECTS
      • PROJECTS
        • Java
        • Python
        • Matlab
        • VLSI
        • Embedded
    • WORKSHOPS
      • Workshops
        • Python
        • Robotics
        • Industry Visit
        • Raspberry Pi
        • Image Processing
        • Mechanical Engineering
        • VLSI
        • Arduino
        • Matlab
        • Machine Learning
        • Embedded
        • Android
        • IoT
    • INTERNSHIPS
      • Internships
        • Python
        • Machine learning
        • Artificial intelligence
        • Web development
        • Android
        • IoT / internet of things
        • Cloud Computing
        • Digital Marketing
        • Big Data
  • Journal paper
  • Blog
  • About us
  • Contact us
“Incorporating Meteorological Data and Pesticide Information to Forecast Crop Yields Using Machine Learning” has been added to your cart. View cart
A Machine Learning
Click to enlarge
Home Projects Python A Machine Learning-Based Classification and Prediction Technique for DDoS Attacks
phishing URL detection A real case scenario through ligin URLs
Phishing URL Detection: A Real-Case Scenario Through Login URLs ₹5,500.00
Back to products
Classifying Swahili Smishing Attacks for Mobile Money users
Classifying Swahili Smishing Attacks for Mobile Money Users: A Machine-Learning Approach ₹5,500.00

A Machine Learning-Based Classification and Prediction Technique for DDoS Attacks

₹5,500.00

Aim:

          We proposed a complete systematic approach to detect DDOS attack using machine learning algorithm.

Watch Product Video
Compare
Add to wishlist
SKU: Python - Machine Learning Categories: Machine Learning, Machine Learning, Projects, Python Tags: DDOS, Machine Learning - Python, Random Forest Classifier, Supervised Learning, XGBoost
Share:
  • Description
  • Reviews (0)
  • Software Download
  • Download Abstract
  • Shipping & Delivery
Description

Aim:

          We proposed a complete systematic approach to detect DDOS attack using machine learning algorithm.

 Abstract:

          Distributed network attacks are referred to as Distributed Denial of Service (DDoS)attacks. These attacks take advantage of specific limitations that apply to any arrangement asset, such as the framework of the authorized organization’s site. In the existing research study. It is necessary to work with the latest dataset to identify the current state of DDoS attacks. In this presented work, used a machine learning approach to predict DDoS attack types.For this purpose, used Random Forest and XGBoost classification algorithms. To access the research proposed a complete framework for DDoS attacks prediction. To meet the proposed objective, we used UNWS-np-15 dataset and Python was used as a simulator. After applying the machine learning models, we generated a confusion matrix for identification of the model performance.In the first classification, the results showed that both Precision (PR) and Recall (RE) are 88% for the Random Forest algorithm. In the second classification, the results showed that both precision(PR) and Recall(RE) are approximately 90% for the XGBoost algorithm

Synopsis:

      Distributed network attacks are referred to, usually,as Distributed Denial of Service (DDoS) attack. A DDoS attack sends different requests (with IP spoofing) to the target web assets to exceed the site’s ability to handle various requests, at a given time,and make the site unable to operate effectively and efficiently_ even for the legitimate users of the network. Typically,the target of various DDoS attacks are web applications and business websites; and the attacker may have different goals.

Existing System:

         CNN and RNN both are two different algorithms that can be used for different purposes. For example, CNN is used for feature extraction and RNN is used for regression in time series data utilization. Though both CNN and RNN based model producing accurate results, it is very long and time consuming process.

Problem Definition:

       The authors used the CNN and RNN model for intrusion detection.This is a very long and time-consuming process. Therefore, it is very important to perform advanced machine learning techniques to model optimization that train the best model for highly accurate work.

Proposed System:

        Among the machine learning techniques, random forest and XGBoost both are powerful supervised learning models.Both are applicable and used for classification problems. The random forest algorithm is approximately 100 times faster than other algorithms and best working for classification problems.

 Advantage:

            It is approximately 100 times faster than the random forest and best for forbid data analysis. Both are simple and faster than other algorithm in terms of execution times.

Reviews (0)

Reviews

There are no reviews yet.

Be the first to review “A Machine Learning-Based Classification and Prediction Technique for DDoS Attacks” Cancel reply

Your email address will not be published. Required fields are marked *


The reCAPTCHA verification period has expired. Please reload the page.

Software Download

You must be logged in to download the software.

Download Abstract

You must be logged in to download the abstract.

Shipping & Delivery
wd-ship-1
wd-ship-2

MAECENAS IACULIS

Vestibulum curae torquent diam diam commodo parturient penatibus nunc dui adipiscing convallis bulum parturient suspendisse parturient a.Parturient in parturient scelerisque nibh lectus quam a natoque adipiscing a vestibulum hendrerit et pharetra fames nunc natoque dui.

ADIPISCING CONVALLIS BULUM

  • Vestibulum penatibus nunc dui adipiscing convallis bulum parturient suspendisse.
  • Abitur parturient praesent lectus quam a natoque adipiscing a vestibulum hendre.
  • Diam parturient dictumst parturient scelerisque nibh lectus.

Scelerisque adipiscing bibendum sem vestibulum et in a a a purus lectus faucibus lobortis tincidunt purus lectus nisl class eros.Condimentum a et ullamcorper dictumst mus et tristique elementum nam inceptos hac parturient scelerisque vestibulum amet elit ut volutpat.

Related products

Compare

Blockchain and AI-Empowered Healthcare Insurance Fraud Detection: An Analysis, Architecture, and Future Prospects

Projects, Java, Blockchain, Python, Blockchain, Block Chain
₹5,500.00
Aim:            The main aim of this project is to detect Healthcare Insurance Fraud and eliminate using blockchain and machine
Add to wishlist
Add to cart
Quick view
Compare

Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms

Python, Cybersecurity, Cyber Security
₹5,500.00
To improve the accuracy and efficiency of cyberbullying detection in social media text by utilizing an advanced machine learning model (DistilBERT) that overcomes ambiguity and classification challenges.
Add to wishlist
Add to cart
Quick view
Compare

Enhancing Smishing Detection A Deep Learning Approach for Improved Accuracy and Reduced False Positives

Python, Machine Learning, Machine Learning
₹5,500.00
The aim of this work is to explore and develop advanced methods for enhancing the detection and prevention of smishing attacks. This involves utilizing cutting-edge technologies such as machine learning, artificial intelligence, and behavioral analysis to identify and block fraudulent SMS messages, protecting users from financial and personal data theft. The goal is to create more effective, real-time detection systems to mitigate the growing threat of smishing attack
Add to wishlist
Add to cart
Quick view
Compare

Plant Disease Detection Using Machine Learning Techniques

Python, Machine Learning, Projects
₹5,500.00
Aim:            We proposed a complete systematic approach to detect Plant disease using Machine Learning algorithm.  Abstract:         This paper
Add to wishlist
Add to cart
Quick view
Compare

Predicting Heart Diseases Using Machine Learning and Different Data Classification Techniques

Python, Machine Learning, Projects, Machine Learning
₹5,500.00
Aim: This study develops a machine learning model to classify heart disease into different severity levels. It analyzes patient data to improve diagnostic accuracy and support medical decisions.
Add to wishlist
Add to cart
Quick view
Compare

Predicting Market Performance Using Machine and Deep Learning Techniques

Python, Deep Learning, Deep Learning
₹5,500.00
The aim of this study is to evaluate the effectiveness of various machine learning and deep learning algorithms, including LSTM networks, ARIMA models, and traditional machine learning techniques, for forecasting market prices. We analyze the performance of these models on stock historical datasets and compare their predictive accuracy to determine the most suitable approach for real-time market analysis. This research seeks to provide insights into the predictability of markets and support informed decision-making for investors
Add to wishlist
Add to cart
Quick view
Compare

Road Traffic Accident Risk Prediction and Key Factor Identification Framework Based on Explainable Deep Learning

Projects, Python, Deep Learning, Artificial Intelligence, Deep Learning
₹5,500.00
Aim: The aim of this study is to develop a robust and accurate traffic accident risk prediction model by leveraging deep learning techniques such as CNN (Convolutional Neural Network), BiLSTM (Bi-directional Long Short-Term Memory), and GRU (Gated Recurrent Unit) models.
Add to wishlist
Add to cart
Quick view
Compare

Toward Improving Breast Cancer Classification Using an Adaptive Voting Ensemble Learning Algorithm

Python, Machine Learning, Projects, Artificial Intelligence, Machine Learning
₹5,500.00
Aim: The primary aim of this study is to develop a robust and accurate auxiliary diagnostic system for breast cancer by integrating machine learning techniques with a hybrid strategy.
Add to wishlist
Add to cart
Quick view

    Global Techno Solutions - GTS, started by young engineering graduates to overcome a problem they faced during their academic years. That is "Providing Solutions". They kept it as the motto for their company.

    • Phone: (+91) 90254 34960
    • Mail: sales@finalyearprojects.in
    Our Category
    • Java
    • Python
    • Embedded
    • Matlab
    • VLSI
    • Mechanical
    USEFUL LINKS
    • Privacy Policy
    • Returns
    • Terms & Conditions
    • Contact Us
    • Latest News
    • FAQ
    Mini Projects
    • Java
    • Python
    • Embedded
    • Matlab
    • VLSI
    Copyright Finalyearprojects.In 2024
    payments
    • Menu
    • Categories
    • Java
    • Python
    • Embedded
    • Machine Learning
    • Mechanical
    • Matlab
    • VLSI
    • Raspberry PI
    • Artificial Intelligence
    • Home
    • Shop
    • Blog
    • About us
    • Contact us
    • Wishlist
    • Compare
    • Login / Register
    Shopping cart
    Close
    Sign in
    Close

    Lost your password?

    OR
    Don't have an account? Signup

    No account yet?

    Create an Account

    HEY YOU, SIGN UP AND CONNECT TO GLOBAL TECHNO SOLUTIONS

    Be the first to learn about our latest trends and get exclusive offers

    Will be used in accordance with our Privacy Policy

    Shop
    0 Wishlist
    2 items Cart
    My account

    Back