A Modular Ice Cream Factory Dataset on Anomalies in Sensors to Support Machine Learning Research in Manufacturing Systems

A Modular Ice Cream Factory Dataset on Anomalies in Sensors to Support Machine Learning Research in Manufacturing Systems

₹5,500.00
Product Code: Python - Machine Learning
Availability: In Stock
Viewed 2035 times

Product Description

Aim:

        The aim of creating a modular ice cream factory dataset on anomalies in sensors to support machine learning research in manufacturing systems is to provide a valuable resource for the development and evaluation of machine learning models and anomaly detection algorithms in the context of manufacturing.


Abstract:

          A small deviation in manufacturing systems can cause huge economic losses, and all components and sensors in the system must be continuously monitored to provide an immediate response. The usual industrial practice is rather simplistic based on brute force checking of limited set of parameters often with pessimistic pre-defined bounds. The usage of appropriate machine learning techniques can be very valuable in this context to narrow down the set of parameters to monitor, define more refined bounds, and forecast impending issues. One of the factors hampering progress in this field is the lack of datasets that can realistically mimic the behaviors of manufacturing systems. In this paper, we propose a new dataset called MIDAS (Modular Ice cream factory Dataset on Anomalies in Sensors) to support machine learning research in analog sensor data. MIDAS is created using a modular manufacturing simulation environment that simulates the ice cream-making process. Using MIDAS, we evaluated three different supervised machine learning algorithms (Logistic Regression, Decision Tree and Random Forest) for two different problems: anomaly detection and anomaly classification. The results showed that Decision Tree is the most suitable algorithm with respect to model accuracy and execution time. We collect the Modular Ice Cream Factory Dataset from the publicly available, to enable interested researchers to enhance the state of the art by conducting further studies


Introduction:

            In a world where most of the commodities are mass produced by companies using automated manufacturing systems, the quality of those systems is of vital importance. Even a small deviation in parts of the system could potentially result in bad or malfunctioning products leading to customer dissatisfaction, environmental impacts or huge economic losses to the industry. This is the main reason why all components and sensors in the system have to be continuously monitored to identify anomalies, and prompt remedial actions should be provided if something goes wrong.


In a generic sense, an ‘anomaly’ is a deviation from expected behavior, and can occur for different reasons, including faults in the system or its configuration, or due to unanticipated external interference. Such interference, or even some system or configuration faults, belong to the realm of cyber security threats if the root cause is an act of bad intention. Regardless of the cause, the consequences of anomalies must be kept at acceptable levels


Proposed System:

           This research aims to create an effective prediction model using different types of ML methods to detect anomalies in Ice cream factory. First of all, the datasets are collected, and then the preprocessing is accomplished via the missing values imputation and Create an instance of RFE with the classifier and the desired number of features to select Logistic Regression classification of modeling and performance evaluation. Then we are using Decision Tree, Logistic regression and Random Forest Algorithm for prediction accuracy. Decision Tree gives a best results with respect to high accuracy. Compare to existing system our new system gives results are more Accuracy.


When you order from finalyearprojects.in, you will receive a confirmation email. Once your order is shipped, you will be emailed the tracking information for your order's shipment. You can choose your preferred shipping method on the Order Information page during the checkout process.

The total time it takes to receive your order is shown below:

The total delivery time is calculated from the time your order is placed until the time it is delivered to you. Total delivery time is broken down into processing time and shipping time.

Processing time: The time it takes to prepare your item(s) to ship from our warehouse. This includes preparing your items, performing quality checks, and packing for shipment.

Shipping time: The time for your item(s) to tarvel from our warehouse to your destination.

Shipping from your local warehouse is significantly faster. Some charges may apply.

In addition, the transit time depends on where you're located and where your package comes from. If you want to know more information, please contact the customer service. We will settle your problem as soon as possible. Enjoy shopping!

Download Abstract

Click the below button to download the abstract.

Package Includes

Software Projects Includes

  1. Demo  Video
  2. Abstract
  3. Base paper
  4. Full Project PPT
  5. UML Diagrams
  6. SRS
  7. Source Code
  8. Screen Shots
  9. Software Links
  10. Reference Papers
  11. Full Project Documentation
  12. Online support


The Delivery time for software projects is 2 -3 working days. Some of the software projects will require Hardware interface. Please go through the hardware Requirements in the abstract carefully. The Hardware will take 7-8 Working Days

 

Hardware Projects Includes

  1. Demo  Video
  2. Abstract
  3. Base paper
  4. Full Project PPT
  5. Datasheets
  6. Circuit Diagrams
  7. Source Code
  8. Screen Shots & Photos
  9. Software Links
  10. Reference Papers
  11. Lit survey
  12. Full Project Documentation
  13. Online support


The Delivery time for Hardware projects is 7-8 working days.

   

Mini Projects: Software Includes

  1. Demo  Video
  2. Abstract
  3. Base paper
  4. Full Project PPT
  5. UML Diagrams
  6. SRS
  7. Source Code
  8. Screen Shots
  9. Software Links
  10. Reference Papers
  11. Full Project Documentation
  12. Online support

 

The Delivery time for software Miniprojects is 2 -3 working days.

 

Mini Projects - Hardware includes

  1. Demo  Video
  2. Abstract
  3. PPT
  4. Datasheets
  5. Circuit Diagrams
  6. Source Code
  7. Screen Shots & Photos
  8. Software Links
  9. Reference Papers
  10. Full Project Documentation
  11. Online support

The Delivery time for Hardware Mini projects is 7-8 working days.