Comparative Analysis Study for Air Quality Prediction in Smart Cities Using Regression Techniques

Comparative Analysis Study for Air Quality Prediction in Smart Cities Using Regression Techniques

₹5,500.00 ₹4,000.00
Product Code: Python - Machine Learning
Availability: In Stock
Viewed 1468 times

Product Description

Aim:

              To systematically compare and evaluate the performance of various regression techniques for Air Quality prediction in smart cities, aiming to identify the most effective model that can contribute to accurate and timely forecasting.


Description:

                In smart cities, air pollution has detrimental impacts on human physical health and the quality of living environment. Therefore, correctly predicting air quality plays an important effective action plan to mitigate air pollution and create healthier and more sustainable environments. Monitoring and predicting air pollution is crucial to empower individuals to make informed decisions that protect their health. This research presents a comprehensive comparative analysis focused on air quality prediction using three distinct regression techniques- Random Forest regression, linear regression, and Decision Tree regression. The main goal of this study is to discern the most effective model by considering a range of evaluation criteria, including Mean Absolute Error and R2 measures. Moreover, it considers the crucial aspects of minimizing prediction errors and enhancing computational efficiency by evaluating the regression models within two frameworks.


         The findings of this study underscore the superiority of the Decision Tree regression approach over the other models, demonstrating its exceptional accuracy with a high R2 score and a minimal error rate. Moreover, integrating cloud computing technology has resulted in substantial improvements in the execution time of these approaches. This technology enhancement significantly affects the overall efficiency of the air quality prediction process. By leveraging distributed computing resources, real-time air quality forecasting becomes feasible, enabling timely decision-making and proactive measures to address air pollution episodes effectively.

Proposed System:

       This study provides to create an effective prediction model using different regression of ML methods to predict Air Quality. First of all, the datasets are collected, and then the preprocessing is accomplished via the missing values imputation. Feature selection for supervised models using SelectKbest. This feature selection is techniques where we choose those features in our data that contribute most to the target variable. In other words we choose the best predictions for target variable. Then we are using Decision Tree, Logistic regression and Random Forest Algorithm for prediction accuracy. Decision Tree gives best results with respect to high accuracy. Compare to existing system our new system gives results are more Accuracy.


When you order from finalyearprojects.in, you will receive a confirmation email. Once your order is shipped, you will be emailed the tracking information for your order's shipment. You can choose your preferred shipping method on the Order Information page during the checkout process.

The total time it takes to receive your order is shown below:

The total delivery time is calculated from the time your order is placed until the time it is delivered to you. Total delivery time is broken down into processing time and shipping time.

Processing time: The time it takes to prepare your item(s) to ship from our warehouse. This includes preparing your items, performing quality checks, and packing for shipment.

Shipping time: The time for your item(s) to tarvel from our warehouse to your destination.

Shipping from your local warehouse is significantly faster. Some charges may apply.

In addition, the transit time depends on where you're located and where your package comes from. If you want to know more information, please contact the customer service. We will settle your problem as soon as possible. Enjoy shopping!

Download Abstract

Click the below button to download the abstract.

Package Includes

Software Projects Includes

  1. Demo  Video
  2. Abstract
  3. Base paper
  4. Full Project PPT
  5. UML Diagrams
  6. SRS
  7. Source Code
  8. Screen Shots
  9. Software Links
  10. Reference Papers
  11. Full Project Documentation
  12. Online support


The Delivery time for software projects is 2 -3 working days. Some of the software projects will require Hardware interface. Please go through the hardware Requirements in the abstract carefully. The Hardware will take 7-8 Working Days

 

Hardware Projects Includes

  1. Demo  Video
  2. Abstract
  3. Base paper
  4. Full Project PPT
  5. Datasheets
  6. Circuit Diagrams
  7. Source Code
  8. Screen Shots & Photos
  9. Software Links
  10. Reference Papers
  11. Lit survey
  12. Full Project Documentation
  13. Online support


The Delivery time for Hardware projects is 7-8 working days.

   

Mini Projects: Software Includes

  1. Demo  Video
  2. Abstract
  3. Base paper
  4. Full Project PPT
  5. UML Diagrams
  6. SRS
  7. Source Code
  8. Screen Shots
  9. Software Links
  10. Reference Papers
  11. Full Project Documentation
  12. Online support

 

The Delivery time for software Miniprojects is 2 -3 working days.

 

Mini Projects - Hardware includes

  1. Demo  Video
  2. Abstract
  3. PPT
  4. Datasheets
  5. Circuit Diagrams
  6. Source Code
  7. Screen Shots & Photos
  8. Software Links
  9. Reference Papers
  10. Full Project Documentation
  11. Online support

The Delivery time for Hardware Mini projects is 7-8 working days.